skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pritchard, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Long-period radio transients are an emerging class of extreme astrophysical events of which only three are known. These objects emit highly polarized, coherent pulses of typically a few tens of seconds duration, and minutes to approximately hour-long periods. Although magnetic white dwarfs and magnetars, either isolated or in binary systems, have been invoked to explain these objects, a consensus has not emerged. Here we report on the discovery of ASKAP J193505.1+214841.0 (henceforth ASKAP J1935+2148) with a period of 53.8 minutes showing 3 distinct emission states—a bright pulse state with highly linearly polarized pulses with widths of 10–50 seconds; a weak pulse state that is about 26 times fainter than the bright state with highly circularly polarized pulses of widths of approximately 370 milliseconds; and a quiescent or quenched state with no pulses. The first two states have been observed to progressively evolve over the course of 8 months with the quenched state interspersed between them suggesting physical changes in the region producing the emission. A constraint on the radius of the source for the observed period rules out an isolated magnetic white-dwarf origin. Unlike other long-period sources, ASKAP 1935+2148 shows marked variations in emission modes reminiscent of neutron stars. However, its radio properties challenge our current understanding of neutron-star emission and evolution. 
    more » « less
  2. ABSTRACT We present results from a search for the radio counterpart to the possible neutron star–black hole merger GW190814 with the Australian Square Kilometre Array Pathfinder. We have carried out 10 epochs of observation spanning 2–655 d post-merger at a frequency of 944 MHz. Each observation covered 30 deg2, corresponding to 87 per cent of the posterior distribution of the merger’s sky location. We conducted an untargeted search for radio transients in the field, as well as a targeted search for transients associated with known galaxies. We find one radio transient, ASKAP J005022.3−230349, but conclude that it is unlikely to be associated with the merger. We use our observations to place constraints on the inclination angle of the merger and the density of the surrounding environment by comparing our non-detection to model predictions for radio emission from compact binary coalescences. This survey is also the most comprehensive widefield search (in terms of sensitivity and both areal and temporal coverage) for radio transients to-date and we calculate the radio transient surface density at 944 MHz. 
    more » « less
  3. This paper investigates the performance capabilities of a continuously variable magnetic gearbox that utilizes a flux focusing rotor structure. A fractional slot stator winding is designed to couple to the outer rotor of an existing magnetic gearbox in order to enable the magnetic gearbox to operate with a variable gear ratio. 
    more » « less